Waste water generates which gas
The gas storage tank acts as a buffer in order to balance fluctuations in the production of gas in the digesters. Where gas production levels are low or highly variable, dual fuel mixing can be used to supplement the sewage gas with natural gas from the mains distribution network. Clarke Energy has extensive experience in the engineering, installation and maintenance of gas generation facilities operating on sewage gas and other gases derived from biological sources.
The Jenbacher gas engine is known for having the highest levels of electrical efficiency on the market. When coupled with a contractual maintenance agreement with Clarke Energy, it will give peace of mind to our customers that they will achieve the highest levels of availability and hence consistent returns from their biogas plant. If you have any technical questions that need answering, would like to arrange to speak to a sales advisor or book a feasibility study.
Sewage gas. Can We Help? With regard to CH 4 emissions, Daelman et al. This amount exceeds the amount of carbon dioxide emission that was avoided by utilizing the produced biogas in anaerobic digestion.
The main sources of methane detected by these authors were related to the sludge line units where anaerobic digestion is carried out: the primary sludge thickener, the centrifuge, the exhaust gas of the cogeneration plant, the buffer tank for the digested sludge, and the storage tank for the dewatered sludge. Research works of Yver Kwok et al. With respect to CO 2 its production is attributed to two main factors: biological treatment process and electricity consumption.
In the main stream of the WWTP the organic carbon of wastewater is either incorporated into biomass or oxidized to CO 2. In the sludge line, it is converted mainly to CO 2 and CH 4 during anaerobic digestion and, finally, methane is oxidized to CO 2 during biogas combustion.
In recent literature the emissions of GHG from the conventional configurations of WWTPs were determined but the analysis of the possible alternatives to minimize these emissions is generally not done [ 24 — 28 ]. On the other hand, most of the papers studying the application of new processes to remove pollutants from wastewaters are mainly focused on the energy savings [ 29 — 32 ] and only few of them also give an environmental evaluation [ 33 — 36 ].
For that, two possible scenarios are discussed and analyzed: to maintain the present scheme of operation of the WWTP and to modify the operational conditions minimization or to implement capture and treatment units for the gaseous streams treatment and to change the scheme of operation and to implement new processes which produce lower GHG emissions than the existing ones prevention. Perhaps, the most efficient way, in terms of costs, to reduce GHG emissions is to modify the operational conditions of WWTPs units but this is not always possible due to the operational limitations of the installed units.
In the following sections, some recommendations about the possible actions to put in practice to operate WWPTs in order to reduce GHG emissions are provided.
Data obtained from the operation of full-scale WWTPs show a wide range of values for the fraction of nitrogen that is emitted as N 2 O 0— Such large variation can be related to the different operational conditions imposed in the studied WWTPs.
Having this in mind decreasing the amounts of N 2 O emitted from activated sludge processes presents a great potential for improvement, by avoiding those operational conditions identified as responsible for its production. Therefore, to minimize N 2 O emissions, biological wastewater treatment plants should be operated at high solid retention times SRT to maintain low ammonia and nitrite concentrations in the media.
Furthermore large bioreactor volumes are recommended to dispose of systems able to buffer loadings and reduce the risk of transient oxygen depletion. N 2 O emissions can be also reduced if nitrous oxide stripping by aeration is limited since microorganisms would have more time to consume it [ 37 ]. CH 4 emissions can be minimized if thickening sludge tanks and sludge disposal tanks are covered to avoid gas leakages and their emissions are captured by hoods which could be burnt with excess biogas in a torch [ 21 ].
Besides the methane produced in the plant itself, methane also enters the plant from outside via the influent since it contains CH 4 that has been formed in the sewer. Organic matter oxidation in the biological reactors and combustion of CH 4 are responsible for the direct CO 2 emissions while indirect emissions are attributed to the energy consumption of the WWTP [ 26 ].
The SRT applied to the biological reactor is a key operational factor that affects these emissions. The operation of the activated sludge system at high values of SRT promotes endogenous respiration of biomass which increases the amount of COD oxidized to CO 2 and decreases the overall sludge production. This decrease of sludge production implies a decrease of the methane production and, therefore, a decrease of the CO 2 emissions associated with its combustion [ 38 ].
Both tendencies counteract each other and the addition value of both quantities remains almost constant. Therefore, CO 2 emissions should be minimized by applying the shortest SRT value as possible without negatively affecting the effluent quality. Results showed that an increase of the SRT from 10 to 30 days supposed an increase of 7.
An important number of technologies are available to destroy or capture N 2 O, CH 4 , and CO 2 from industrial gaseous streams but there is still a need for the development of efficient low-cost abatement technologies to treat gaseous streams from WWTPs. On the other hand, the capital costs required to cover the different tanks and capture GHG emissions are relatively high [ 47 ].
Traditional technologies, such as selective catalytic reduction and selective noncatalytic reduction, are currently used to control NO x emissions from power plants [ 48 — 50 ]. However, both processes require operating at high temperatures or using catalysts, which revert to high installation and maintenance costs. These total costs become prohibitive in large-scale facilities treating air flows containing low-to-moderate concentrations of NO x [ 51 ].
Recently, many different bioprocesses, using nitrifying and denitrifying bacteria or microalgae, have been developed to control NO x gas emissions. However, the low aqueous solubility of this greenhouse gas limits the mass transfer rate from the air flow to the liquid phase and, therefore, high hydraulic retention times HRT are required to achieve high N 2 O removal efficiencies.
These long applied HRT result in large bioscrubber or biofilter volumes, with the subsequent increase in capital costs [ 53 ]. Another alternative is to collect the outlet gaseous stream from the top of the nitrifying unit, containing N 2 O, and use it as oxidizer to burn the methane produced in the anaerobic sludge digester [ 54 ]. Biological technologies to remove CH 4 from waste gaseous emissions, based on biofilter systems, have been studied since the early s although they are not yet consolidated at industrial scale [ 55 , 56 ].
In aerobic conditions CH 4 is oxidized by methanotrophic bacteria in the presence of oxygen. For these reasons, nowadays, the interest has moved to remove the CH 4 directly from the liquid phase, before it is stripped to the atmosphere.
To accomplish this removal the anaerobic methane oxidation is coupled to a denitrification process 2 - 3 which uses the methane as electron donor. In this case methane and both nitrite and nitrate are removed from wastewater [ 59 ]. Furthermore not only is the GHG removed but also the electron donor requirements for the denitrification processes diminish, reducing the costs of potential addition of external carbon source.
After the biological processes the methane remaining in the exhausted gaseous stream can be submitted to a postcombustion process [ 60 ]. For the CO 2 gas removal extensive research has been carried out on the study of its capture by chemical or physical sorption and membrane separation processes from power cycles and industrial processes [ 61 , 62 ]. However, the application of these technologies is generally associated with high capital and operating costs and the generation of waste streams.
For these reasons, nowadays the cultivation of microalgae is being considered as an attractive alternative for CO 2 gas sequestration. In WWTPs microalgae can be used for precombustion CO 2 capture, as an economic way for biogas purification [ 63 ], or for postcombustion CO 2 capture in order to maximize the microalgae production for their use as biofertilizer [ 64 ] or as substrate to increase biogas production [ 65 ].
Most of the efforts to improve WWTPs performance are being focused on economic aspects related to energy consumption reduction, minimization of sludge production, and maximization of the amount and quality of biogas generated. To face these topics is important not only in terms of operational costs but also in terms of environmental impacts since it allows reducing direct and indirect GHG emissions [ 9 , 66 , 67 ].
The remaining part is wasted under aerobic conditions due to the use of conventional nitrification and denitrification processes to remove nitrogen and organic matter simultaneously [ 68 ]. An alternative is to apply autotrophic processes to remove nitrogen, such as those based on the combination of the partial nitrification plus Anammox processes or the use of microalgae and even the application of biochemical processes.
In this way both organic matter and nitrogen compounds can be removed in separated processes as the former is not required for denitrification but directed to the anaerobic digestion for biogas production. Thus oxygen requirements are minimized while methane production is maximized [ 69 — 71 ]. In principle according to the metabolism of Anammox bacteria these are not directly involved in the production of N 2 O [ 72 ] and, therefore, the application of the Anammox process in the WWTPs instead of the conventional nitrification-denitrification processes is expected to reduce N 2 O emissions.
However, in practice during the operation of full-scale Anammox reactors treating the reject water from sludge anaerobic digesters N 2 O emissions have been detected and accounted for up to 0. This value is much higher than the percentages previously measured in lab-scale Anammox enriched reactors fed with synthetic media of 0. For this reason the results at full scale can be attributed to the presence of nitrifying bacteria, entering the Anammox reactor in the stream coming from the previous partial nitrification unit [ 74 ].
Furthermore Kampschreur et al. From the previous results, obtained from full-scale systems, about 2. In these conditions a two-stage partial nitritation-Anammox process appears as a nonsuitable alternative to reduce N 2 O emissions in WWTPs [ 66 , 67 ]. Emitted percentages can be reduced down to 0. At full scale this configuration is the most applied one for the treatment of reject water from the sludge line [ 78 ].
For this reason, all the latest studies of the application at the main stream of the Anammox based processes have been carried out in single-stage systems.
However, this kind of systems must be operated at low dissolved oxygen concentrations to maintain the balance between ammonia oxidation and Anammox rates and, therefore, the achieved nitrogen removal rates are relatively low [ 68 ]. However to operate at low dissolved oxygen levels promotes the development of nitrite-oxidizing bacteria and favours the oxidation of ammonia to nitrate instead of its desired conversion to N 2 [ 78 ].
Due to this difficulty in avoiding the activity of the nitrite-oxidizing bacteria a change of concept has occurred and most of the research in course to implement the Anammox process at the main stream is focused on the two-stage reactor configuration.
In this way operational strategies to avoid the development of nitrite-oxidizing bacteria, without affecting the Anammox bacteria, can be evaluated [ 68 ]. This might imply that the emissions of N 2 O would hamper the practical application of the partial nitritation-Anammox process, from the energy-saving and cost-effective point of view. Nevertheless, since the total amount of N 2 O emission from the partial nitrification unit is correlated to the nitrite concentration present, N 2 O emissions about 0.
Until now data of N 2 O emissions from Anammox systems in operation in the main stream conditions are not available in the literature, although if the entrance of nitrifying bacteria inside the Anammox system is minimized the expected emissions would be limited to 0. This means that the partial nitritation-Anammox system treating the main stream would emit in total around 0. Taking into account the fact that WWTPs with nitrogen removal carried out by nitrification-denitrification processes have a median emission factor of 0.
Recently, Scherson et al. Then from steps and ammonia is converted to N 2 O, which is used in step as a cooxidant for CH 4 combustion or decomposed over a metal oxide catalyst to recover energy. The end product of the reaction is the N 2. The innovation consists of utilizing N 2 O as a renewable energy source and reducing the requirements of organic matter which is consumed during denitrification.
One of the main operating costs of conventional activated sludge systems, where nitrogen removal takes place, is associated with the large aeration requirements. Alternative systems like those based on microalgae are being considered as potential substitutes. In these systems nitrogen is removed via assimilation for biomass growth without oxygen consumption 8 [ 81 ], decreasing energy requirements. Moreover, a low N 2 O production is expected 0. These microalgae ponds occupy large land areas which limits their use to rural areas.
Another disadvantage of the microalgae application relies on the poor settling properties of the microalgae, which implies the use of coagulants and flocculants for separation from the treated wastewater [ 84 ].
For this reason, a novel approach consisting in the use of algal-bacterial cocultures has received significant attention in recent years as well. In this way the bacterial population would profit from the O 2 produced by algae reducing the aeration requirements of treatment processes and at the same time greenhouse gas emissions are mitigated by the CO 2 consumption during algal photosynthesis Figure 3.
Then, for typical urban wastewater, the amount of oxygen produced by microalgae would be higher than the O 2 amount needed to remove organic matter by the activity of the heterotrophic biomass [ 85 ]. Therefore, both organic matter and nitrogen could be simultaneously removed in an open raceway pond without oxygen external supply. In addition, challenges associated with the high energy requirements for algal biomass harvesting might be overcome by means of the better settleability properties of the algal-bacterial coculture.
Su et al. In order to quantify the potential reduction of GHG emissions due to the implementation of new processes in WWTPs prevention strategy , five different configurations were evaluated for comparison purposes.
Case A. A conventional activated sludge system was used as a base case, performing the nitrification-denitrification process to remove both organic matter and nitrogen Figure 4. The following cases take this one as a base case and only the descriptions of modifications applied to this configuration are included.
Case B. In this case, the primary settler is intended for removing all the particulate COD to promote the anaerobic route of organic matter. Nitrogen is treated from the return sludge stream by a 1-stage partial nitritation-Anammox reactor.
Case C. A CANDO system comprising a partial nitrification and a partial denitrifying reactor is implemented in the sludge line. In the sludge line, an acidogenic reactor is used to provide organic matter to the partial denitrifying reactor. Produced N 2 O is used, instead of O 2 , to burn methane. Case D. Case E. A high rate microalgae pond SRT and HRT of 6 days where the microalgae remove the nitrogen and provide the oxygen required for the heterotrophic bacteria to oxidize the organic matter was evaluated in substitution of the activated sludge system.
Mass and energy balances were performed by using Excel spreadsheets according to the methodology described in Campos et al. Finally, the emissions of CO 2 , CH 4 , and N 2 O were estimated considering the results obtained from the mass balances and the parameters given in Tables 1 and 2. Results obtained from the calculations indicate that systems using microalgae to remove nitrogen are the most suitable systems to reduce GHG emissions during wastewater treatment Figure 5.
This fact is mainly due to the high amount of CO 2 captured by the microalgae together with the contribution of three other factors: the improvement of the WWTP energy efficiency: in Case D, since the application of microalgae to remove nitrogen does not require the presence of organic matter, most of it can be converted into methane while, in Case E, oxygen generated by microalgae allows an important energy saving in terms of aeration; the very low emissions of N 2 O observed in the high rate microalgae ponds; and the additional biogas production due to the anaerobic digestion of the generated microalgae.
When the partial nitritation and Anammox processes are used to remove ammonia, instead of conventional nitrification and denitrification processes, the WWTP energy efficiency is also improved which also causes a decrease of GHG emissions. However this decrease is considerably lower than that obtained by microalgae systems. This can be attributed to the increase of N 2 O emissions due to the implementation of a partial nitrification reactor in the sludge line and the leakage of nitrous oxide expected in the exhaust gas.
Nowadays, there are several technologies already implemented at full scale to perform partial nitrification-Anammox processes in the sludge line [ 87 , 88 ]. However, in spite of the recent advances, their implementation at the main stream is still a challenge due to the strict control of operational conditions needed to maintain the stability of the partial nitrification process [ 89 ].
The use of microalgae systems to remove nitrogen from domestic wastewater is a feasible option when enough land is available since this kind of systems would require about ten times the area necessary for activated sludge systems [ 90 ]. Moreover, the need of the development of a reliable technology for its implementation at full scale and its negative environmental impact make it not as attractive as the partial nitrification-Anammox and microalgae systems.
N 2 O and CO 2 emissions can be decreased by a good control of the operational conditions of the activated sludge system. CH 4 emissions can be minimized if emissions from the different units of the sludge line are captured by hoods and burnt together with the biogas generated in the sludge anaerobic digester. N 2 O emissions will depend mainly on the operational conditions and O 2 concentrations of the reactor systems. Nowadays most of the technologies available to remove GHG are expensive or even not suitable to be applied to gaseous streams of the WWTPs.
Biological systems treatment has low operating costs but their capital costs are high due to their size. The correct selection of the process to be installed in the plant will provide the best results as it is the case of the partial nitritation-Anammox process which is feasible in two units applied in the main stream of the plant but not for the treatment of the sludge line. The configuration of the next generation of WWTPs should maximize the anaerobic pathway for organic matter removal and the use of microalgae, if enough area is available, or partial nitritation-Anammox processes to remove ammonia.
The authors A. Campos et al. This is an open access article distributed under the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Article of the Year Award: Outstanding research contributions of , as selected by our Chief Editors. Read the winning articles. Journal overview. Special Issues. Campos , 1 D. Valenzuela-Heredia, 1 A. Pedrouso, 2 A.
Belmonte, 3,4 and A. Academic Editor: Claudio Di Iaconi. Received 28 Dec Revised 29 Mar Accepted 05 Apr During anaerobic digestion, microorganisms break down organic materials from wastewater. The methane gas produced from this process is then used to generate heat and electricity that is used in plant operations. Live Chat It looks like your browser does not have JavaScript enabled.
Please turn on JavaScript and try again. Turning Wastewater into Energy. Page Content. Metro Vancouver is conducting ongoing research to find other ways to create energy from wastewater.
0コメント